

FORTEZZA CRYPTO
CARD

SECURITY POLICY

Fortezza Crypto Card

Security Policy

Document # 540-105000-A1
Revision A1

31 December 1998

SPYRUS
®

<info@spyrus.com> <http://www.spyrus.com>

mailto:info@spyrus.com
http://www.spyrus.com/

© 1998 SPYRUS. All Rights Reserved.

This document is provided only for informational purposes and is accurate as of the date
of publication. This document may not be distributed for profit. It may be copied subject
to the following conditions:

! All text must be copied without modification and all pages must be included.
! All copies must contain the SPYRUS copyright notices and any other notices provided

herein.

TRADEMARKS

SPYRUS, the SPYRUS logos, LYNKS Privacy Card and SPEX/ are registered trademarks of
SPYRUS. Algorithm Agile, Autograph Book, Certificate Authority-In-A-Box,
Cryptocalculator, Digital Deadbolt, En-Sign, Get Smart, HYDRA Privacy Card, Hyperlynks,
ISP-In-A-Box, JSET, Locksmith, LYNKS Signature Card, Merchant-In-A-Box, MIMIC,
MultiSession, Registration Authority-in-a-Box, Rosetta, Security-In-A-Box,
SMARTOKEN, SPYCOS, SUPERSAM and WEBWALLET are trademarks of SPYRUS.

Terisa Systems is a registered trademark and SecureWeb Documents, SecureWeb
Toolkit, and SecureWeb Payments are trademarks of Terisa Systems, Inc., a wholly-
owned subsidiary of SPYRUS.

Spyrus Document No. 510-105000-
A1 Page i

Contents

1 INTRODUCTION ... 1
1.1 Scope ...1

2 OVERVIEW.. 1

3 FUNCTION FORMATS .. 1
3.1 Function Description...1
3.2 Parameter Formats...2
3.3 Data Structures ..2
3.4 Function Organization...3

4 FUNCTION DESCRIPTIONS .. 4
4.1 CI_ChangePIN ..4
4.2 CI_CheckPIN ..4
4.3 CI_Decrypt ..5
4.4 CI_DeleteCertificate ...5
4.5 CI_DeleteKey..5
4.6 CI_Encrypt ..6
4.7 CI_ExtractX ..6
4.8 CI_FirmwareUpdate..7
4.9 CI_GenerateIV ..8
4.10 CI_GenerateMEK ...8
4.11 CI_GenerateRa..9
4.12 CI_GenerateRandom...9
4.13 CI_GenerateTEK ..9
4.14 CI_GenerateX ...9
4.15 CI_GetCertificate..9
4.16 CI_GetConfiguration ..10
4.17 CI_GetHash...11
4.18 CI_GetPersonalityList...11
4.19 CI_GetState...13
4.20 CI_GetStatus ...13
4.21 CI_GetTime ..13
4.22 CI_Hash ..13
4.23 CI_Initialize ..14
4.24 CI_InitializeHash ..14
4.25 CI_InstallX..14
4.26 CI_LoadCertificate ...14
4.27 CI_LoadDSAParameters...15
4.28 CI_LoadInitValues..15
4.29 CI_LoadIV ..15
4.30 CI_LoadX ...16
4.31 CI_Lock ..16
4.32 CI_Open..16
4.33 CI_RelayX ..16

SPYRUS Fortezza Crypto Card Security Policy

Spyrus Document No. 510-105000-
A1 Page

 ii

4.34 CI_Reset..16
4.35 CI_Restore ..17
4.36 CI_Save...17
4.37 CI_Select...17
4.38 CI_SetConfiguration ...17
4.39 CI_SetKey...17
4.40 CI_SetMode ..18
4.41 CI_SetPersonality ...18
4.42 CI_SetTime ...18
4.43 CI_Sign ...18
4.44 CI_Terminate ..18
4.45 CI_TimeStamp..19
4.46 CI_Unlock...19
4.47 CI_UnwrapKey ...19
4.48 CI_VerifySignature...19
4.49 CI_VerifyTimeStamp..19
4.50 CI_WrapKey ...20
4.51 CI_Zeroize ..20

5 ROLES ... 20
5.1 Crypto-Officer Role ..20
5.2 User Role...21
5.3 Self-test..23

Revision History

REV. # DATE DESCRIPTION
A1 31 Dec 98 Original

SPYRUS Fortezza Crypto Card Security Policy

Spyrus Document No. 510-105000-A1 1

1 Introduction

The Fortezza Crypto Card (which will be referred to as the PCcard for the rest of this document)
is a small electronic device developed by SPYRUS for the U.S. Government. The devices is
primarily used within the U.S. Government with the Defense Messaging System (DMS). The
PCcard communicates with the host computer via a standard PCMCIA interface.

The PCcard is a cryptographic module which implements the following Cryptographic
algorithms Digital Signature Algorithm (DSA) FIPS PUB 186, Secure Hash Algorithm (SHA-
1) FIPS PUB 180-1, Key Exchange algorithm (KEA) , and SKIPJACK. The PCcard also
contains a PCMCIA interface which complies with PCMCIA Standard 2.1.

1.1 Scope

This document describes the security policy for the PCcard.

2 Overview

The PCcard supports a set of commands that the host computer sends to it via the PCMCIA
interface. These commands are used to support cryptographic based authentication and
encryption applications.

The PCcard is a multi-chip standalone module based on the Fortezza Interface Control Document
(ICD) version 1.52.

3 Function Formats

3.1 Function Description

Each function description contains:

• Section header

• Textual description of the function

• Parameter passing notation

• C language definition

• Parameter definition

• Return values (italic for card response, normal for library response) Note: Not all possible
return values are listed for each command. Section 2.1.3, General Error Notices, defines
some potential errors which usually are not listed with any function.

• The Cards State Transitions (if applicable)

SPYRUS Fortezza Crypto Card Security Policy

Spyrus Document No. 510-105000-A1 2

The Parameter passing notation is:

Function Name: [Input Parameters]
 {Output Parameters}

If the function does not require any input then [none] is used.
All functions return an integer result.

The C language definitions mostly conform to the ANSI C standard. One exception may be the
use of the keyword ‘far’. The keyword ‘far’ is used for the MS DOS environment and may be
omitted in all other environments. To effectively remove the keyword ‘far’ the ANSI C
preprocessor command:

#define far
is used. This will be done in the any header file that contains the ‘far’ keyword.

Note: Currently the CI Library does not use the ‘far’ directive. It is the responsibility of the
person building the CI Library to ensure that the source code is compiled correctly. For the MS
DOS and MS Windows environments, this includes ensuring that the appropriate memory model
and data alignment (single or double byte) is used. The other exception is the time functions do
not use ANSI compliant commands, although the commands are supported on all major industry
standard platforms.

3.2 Parameter Formats

The target systems for the CI Library are MS DOS, UNIX and Macintosh. MS DOS uses little
endian numeric representation. Macintosh and most UNIX implementations use big endian
numeric representation. The CI Library is written so that the functions may be called using the
host system’s native numeric representation. The Card uses a 32 bit word in the big endian
numeric format. For MS DOS, the CI Library will convert all 16 bit values into 32 bit values and
convert the little endian number into big endian transparently to the user of the CI Library.

For larger data objects, such as CI_PIN, the data must be placed into the buffer such that the first
byte of the data object is located into the first byte of the buffer where the first byte of the buffer
has the lowest address. A PIN phrase such as “CRYPTOGRAPHY” must be in a buffer as
follows:
PIN[0] = ‘C’; PIN[1] = ‘R’; PIN[2] = ‘Y’; PIN[3] = ‘P’; PIN[4] = ‘T’; PIN[5] = ‘O’;
PIN[6] = ‘G’; PIN[7] = ‘R’; PIN[8] = ‘A’; PIN[9] = ‘P’; PIN[10] = ‘H’; PIN[11] = ‘Y’

where PIN[0] is the first byte, the byte with the lowest address, of the PIN phrase.

3.3 Data Structures

When data objects are loaded from ASCII/ANSI text files, the text should be evaluated from left
to right, top to bottom. The first two characters of the ASCII hex string are converted to an
unsigned eight bit byte and placed into the first byte of the buffer. The remaining ASCII hex
character pairs are converted to unsigned byte values and placed into consecutively higher
addresses of the buffer. This must be done on the byte level, otherwise byte swapping may occur.

SPYRUS Fortezza Crypto Card Security Policy

Spyrus Document No. 510-105000-A1 3

3.4 Function Organization

 CI_Initialize CI_Close
 CI_Terminate CI_GetConfiguration
 CI_GetState
 CI_Lock
 CI_Open
 CI_Reset
 CI_Select
 CI_SetConfiguration
 CI_Unlock

 CI_ChangePIN CI_Zeroize CI_CheckPIN
 CI_ExtractX CI_DeleteCertificate
 CI_FirmwareUpdate CI_GenerateX
 CI_LoadInitValues CI_GetCertificate
 CI_SetTime CI_GetPersonalityList
 CI_GetStatus
 CI_GetTime
 CI_InstallX
 CI_LoadCertificate
 CI_LoadX
 CI_RelayX
 CI_SetPersonality

 CI_DeleteKey CI_LoadDSAParameters CI_Decrypt
 CI_GenerateMEK CI_Sign CI_Encrypt
 CI_GenerateRa CI_TimeStamp CI_GenerateIV
 CI_GenerateRandom CI_VerifySignature CI_LoadIV
 CI_GenerateTEK CI_VerifyTimeStamp CI_SetMode
 CI_SetKey CI_GetHash
 CI_UnwrapKey CI_Hash
 CI_WrapKey CI_InitializeHash CI_Restore
 CI_Save

CI Library

Library Functions Management
Functions

Cryptologic
Functions

Zeroize
Setting

SSO/User Initialization

Key
Management

Decryption,
Encryption

Signature,
Hash

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

4

4 Function Descriptions

4.1 CI_ChangePIN

The CI_ChangePIN function allows the SSO Enabled User to change the SSO or User
PIN phrase given the current PIN phrase. The parameter PINType specifies if the PIN
phrase is the SSO or User PIN. The constant CI_PIN_SIZE is defined to be 12 bytes and
CI_PIN is a 16 byte character array: CI_PIN_SIZE + a 1 NULL byte terminator + a 3
byte pad (to assure byte alignment on word boundaries). The CI Library will pad the PIN
phrases with ‘space’ characters (0x20) to CI_PIN_SIZE (12) bytes before passing it to
the Card.

4.2 CI_CheckPIN

The CI_CheckPIN function determines if the PIN phrase is valid. The parameter
PINType specifies if the PIN phrase is the SSO or User PIN. The constant CI_PIN_SIZE
is defined to be 12 bytes and CI_PIN is a 16 byte character array: CI_PIN_SIZE + a 1
NULL byte terminator + a 3 byte pad (to assure byte alignment on word boundaries). The
CI Library will pad the PIN phrase with ‘space’ characters (0x20) to CI_PIN_SIZE (12)
bytes before passing it to the Card.

Card Notice: The Card allows only 9 consecutive incorrect PIN values. If a user enters the
User PIN wrong 10 consecutive times, the Card transitions to the LAW Initialized State.
No data on the Card is lost but the user must take the card back to the SSO. If a User
enters an SSO PIN incorrectly 10 consecutive times, the Card will transition to the
Zeroized State whereby all data on the Card is lost.

PIN Types Description
CI_SSO_PIN Check the SSO PIN phrase.
CI_USER_PIN Check the User PIN phrase.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

5

4.3 CI_Decrypt

The CI_Decrypt function decrypts the data pointed to by pCipher and places it in the
buffer pointed to by pPlain. The CipherSize parameters specifies the number of bytes to
decrypt and the number of bytes in the buffer pointed to by pPlain. The pointer pPlain
may point to the same buffer as pCipher so that the plaintext will overwrite the ciphertext.
Due to the limited amount of space on the Card, large data sets may be decrypted with
multiple calls to CI_Decrypt. Use the CI_GetConfiguration function to determine the
amount of user memory on the Card.

Prior to executing the CI_Decrypt function the decryption mode needs to be set, the
decryption key loaded into the cryptologic and an IV needs to be loaded. The mode is set
by the CI_SetMode function. The default decryption mode is 64 bit Cipher Block
Chaining (CI_CBC64). The CI_LoadIV function is used to load the IV. For multi-call
decryption sessions the IV only needs to be loaded prior to the first call to CI_Decrypt.
The key is set with the CI_SetKey function.

4.4 CI_DeleteCertificate

The CI_DeleteCertificate function zeroizes the Certificate and Certificate Label and

any Private Component (X), Public Component (Y) and Public Key Parameters (p, q,
and g) associated with the Certificate specified by the CertificateIndex. The Card only
allows an SSO Enabled User to delete Certificate Index 0. Deleting an unused
Certificate Index is permitted.

4.5 CI_DeleteKey

The CI_DeleteKey function zeroizes the Key Register specified by RegisterIndex.
Deleting an unused Key Register is permitted.

The Card uses Key Register zero (0) to hold it’s Storage key, Ks. The Card only allows
the SSO Enabled User to delete this register.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

6

4.6 CI_Encrypt

The CI_Encrypt function encrypts the data pointed to by pPlain and places it into the
buffer pointed to by pCipher. The PlainSize parameter specifies the number of bytes to
encrypt and the number of bytes in the buffer pointed to by pCipher. The pointer pCipher
may point to the same buffer as pPlain so that the ciphertext will overwrite the plaintext.
Due to the limited amount of space on the Card, large data sets may be encrypted with
multiple calls to CI_Encrypt. Use the CI_GetConfiguration function to determine the
amount of user memory on the Card.

Prior to executing the CI_Encrypt function the encryption mode needs to be set, the
encryption key loaded into the cryptologic and an IV must be generated. The mode is set
by the CI_SetMode function. The default encryption mode is 64 bit Cipher Block
Chaining (CI_CBC64). The CI_GenerateIV function is used to generate the IV. For a
multi-call encryption session the IV is only generated prior to the first call to
CI_Encrypt. The key is set with the CI_SetKey function.

4.7 CI_ExtractX

The CI_ExtractX function allows the SSO Enabled User to retrieve a Private (X) value
covered using the Public Key Exchange protocol. Only those Private values loaded or
generated under the SSO PIN may be extracted. A valid personality must be set (via
CI_SetPersonality) before this function is executed.

The constant CI_PASSWORD_SIZE is defined to be 24 bytes and CI_PASSWORD is
a 28 byte character array: CI_PASSWORD_SIZE + a 1 NULL byte terminator + a 3
byte pad (to assure byte alignment on word boundaries). Also, the CI Library pads the
password with zero (0) to CI_PASSWORD_SIZE (24) bytes before passing it to the
Card.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

7

4.8 CI_FirmwareUpdate

The CI_FirmwareUpdate function loads a complete new set of application software
onto the Card.

Flags Description
CI_DESTRUCTIVE_FLAG The non-volatile memory of the Card is to

be zeroized. It may not be used with the
CI_NONDESTRUCTIVE_FLAG.

CI_LAST_BLOCK_FLAG This is the last block of the firmware. It
may not be used with the
CI_NOT_LAST_BLOCK_FLAG.

CI_NONDESTRUCTIVE_FLAG The non-volatile memory of the Card is not
to be zeroized. It may not be used with the
CI_DESTRUCTIVE_FLAG.

CI_NOT_LAST_BLOCK_FLAG This is not the last block of the firmware. It
may not be used with the
CI_LAST_BLOCK_FLAG.

CI_FirmwareUpdate: [Flags, Cksum, CksumLength, DataSize, pData]
{return value}
int CI_FirmwareUpdate(long Flags, long Cksum, unsigned int CksumLength,

unsigned int DataSize, CI_DATA pData)
Parameter Type Description
Flags unsigned long Options for the firmware update from the

list above.

Cksum long The checksum value.

CksumLength unsigned int The length of the checksum.

DataSize unsigned int Number of bytes in the buffer pointed to

by pData.

pData CI_DATA Pointer to the buffer containing the

firmware to load.

return value int The function’s completion code.
 Value Meaning
 CI_OK The firmware was updated.
 CI_FAIL The firmware was not updated.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

8

 CI_CHECKWORD_FAIL The checkword did not match.
 CI_INV_SIZE The data size is not valid.
 CI_INV_STATE This function may not be executed in this Card

state.
 CI_INV_POINTER The Card detected an invalid pointer.
 CI_TIME_OUT The Card failed to complete the command.
 CI_NULL_PTR The pointer to the firmware is NULL.
 CI_NO_CARD The Card was not found.
 CI_NO_SOCKET A Socket has not been opened.
 Entry State Exit State

Uninitialized Uninitialized-Card is reset
Initialized Uninitialized-Card is reset

SSO Initialized SSO Initialized-Card is reset if
Non Destructive or

Uninitialized if Destructive
LAW Initialized LAW Initialized-Card is reset if

Non Destructive or
Uninitialized if Destructive

User Initialized User Initialized-Card is reset if
Non Destructive or

Uninitialized if Destructive

4.9 CI_GenerateIV

The CI_GenerateIV function generates an Initialization Vector (IV). The IV is stored in
the cryptologic engine and returned in pIV. This function must be used before an
encryption process (CI_Encrypt) can be performed.

4.10 CI_GenerateMEK

The CI_GenerateMEK function generates a random Message Encryption Key (MEK).
The MEK will be placed into the register indicated by the RegisterIndex parameter. The
CI_GenerateMEK is used prior to the CI_Encrypt function to generate a key.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

9

4.11 CI_GenerateRa

The CI_GenerateRa function will generate a Ra. The 1024 bit (128 byte) Ra is returned
in pRa. The Ra is used with CI_GenerateTEK function.

4.12 CI_GenerateRandom

The CI_GenerateRandom function will generate a random number and returns it in
pRandom.

4.13 CI_GenerateTEK

The CI_GenerateTEK function generates a Token Encryption Key (TEK) for a
public/private key exchange.

For some protocols the Rb must be set to a known value. To calculate an Rb with the
value one (1) in the big endian numeric format (which is required for MSP): initialize the
Rb with 0, then set the least significant bit of the last byte to 1. To create an Rb with the
value one in little endian: initialize the Rb with zero, then set the least significant bit of
the first byte to 1. The following C code fragment will create a 1024 bit Rb with the value
one in big endian:

4.14 CI_GenerateX

The CI_GenerateX function generates a public key pair, Private Component (X) and
Public Component (Y), of the type specified by AlgorithmType. The X is saved on the
Card. The Y is returned in the pY parameter and the host may integrate it into a
Certificate. The Certificate can then be loaded onto the Card at the Certificate index
associated with the X.

4.15 CI_GetCertificate

The CI_GetCertificate function returns the certificate associated with the Certificate
Index specified by CertificateIndex. The certificate is 2048 bytes.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

10

4.16 CI_GetConfiguration

The CI_GetConfiguration function returns a CI_CONFIG structure which contains:

Field Name Data Type Description
LibraryVersion integer Crypto Interface Library

Version.
ManufacturerVersion integer The Card’s Hardware

Version.
ManufacturerName an array of The Card Manufacturer’s

name.
 CI_NAME_SIZE + 4 (36)
 characters
ProductName an array The Card’s product name.
 CI_NAME_SIZE + 4 (36)
 characters
ProcessorType an array The Card’s processor type.
 CI_NAME_SIZE + 4 (36)
 characters
UserRAMSize unsigned long integer The number of bytes of User

RAM.
LargestBlockSize unsigned long integer The size, in bytes of the

largest block of data that may
be passed to a function.

KeyRegisterCount integer The number of Key Registers
on the Card.

CertificateCount integer The maximum number of
Certificates that the Card can
store (including Certificate
0).

CryptoCardFlag integer A flag that if non-zero
indicates that there is a
Crypto-Card in the socket. If
this value is zero then there is
not a Crypto-Card in the
socket.

ICDVersion integer The ICD Compliance level.
For example, for an ICD Compliance level of “P1.5”, this value is 0015H.
ManufacturerSWVer integer The Manufacturer’s Software Version
For example, given 1234H, the Firmware Version is 12, and the Hardware Version is

34.
DriverVersion integer Fortezza Device Driver Version.

The constant CI_NAME_SIZE is defined to be 32.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

11

Note that ManufacturerName, ProductName, and Processor Type are 36 byte character
arrays CI_NAME_SIZE + a 1 NULL byte terminator + a 3 byte pad (to assure byte
alignment on word boundaries).

CI_GetConfiguration: [none]
{pConfiguration, return value}
int CI_GetConfiguration(CI_CONFIG_PTR pConfiguration)
Parameter Type Description
pConfiguration CI_CONFIG_PTR Points to the buffer that will receive the

configuration information.

return value int The function’s completion code.
 Value Meaning
 CI_OK The Configuration was successfully retrieved.
 CI_NULL_PTR The pointer to Configuration is NULL.
 CI_NO_CARD The Card is not present.
 CI_NO_SOCKET A Socket has not been opened.

4.17 CI_GetHash

The CI_GetHash function hashes the last block of data and returns the final Hash Value.
The Hash Value is 160 bits (20 bytes). The application must call CI_InitializeHash
before calling CI_Hash or CI_GetHash. CI_GetHash is called when the last (or only)
block of data ends on a non multiple of 64 or is exactly 0 bits.

4.18 CI_GetPersonalityList

The CI_GetPersonalityList function returns the list of CI_PERSON structures. The
CI_PERSON structure contains a CertificateIndex and a Certificate Label. Use the
CI_GetConfiguration function to determine the maximum number of certificates that
the Card can hold. Use the CI_GetCertificate function to retrieve the certificate
associated with a Certificate Index.

Note that the constant CI_CERT_NAME_SIZE is defined to be 32 bytes and
CI_CERT_STR is a 36 byte character array: CI_CERT_NAME_SIZE + a 1 NULL
byte terminator + a 3 byte pad (to assure byte alignment on word boundaries).

A CI_PERSON data structure is defined as:

Field Name Data Type Description

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

12

CertificateIndex integer Index of the certificate
CertLabel CI_CERT_STR Personality string of the

certificate

Certificate Index zero (0) can not be selected so it is not returned in the personality list.

If EntryCount is greater than the maximum number of certificates that the Card can hold,
then each additional personality structure will have its CertificateIndex set to zero (0) and
Certificate Label filled with zero (0). Use the CI_GetConfiguration function to
determine the maximum number of certificates that the Card can hold. If EntryCount is <
1, an error of CI_BAD_SIZE is returned.

Note that not all of the Certificate Indexes in the personality list are valid or useable
Personalities. It is up to the host application to parse the Certificate Label to determine if
the Certificate Index is an appropriate Personality. If a Certificate index does not contain
a certificate, the index is returned with a NULL Label. Ex: If a card holds 6 (0-5, 0 is not
displayed) personalities and the user sets EntryCount to 7 then:

Entry Counter Certificate Index Certificate Label

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

13

4.19 CI_GetState

The CI_GetState function returns the execution state of the Card in pState. This function
may be called at any time, regardless of if the Card has been initialized or logged on to.

4.20 CI_GetStatus

The CI_GetStatus function returns the status of the Card. This command may be called
before the CI_CheckPIN function.

4.21 CI_GetTime

The CI_GetTime function retrieves the current time from the Card’s on-board real-time
clock.

Note that an application may not want to check the time more than one (1) time per
second. The Card may not increment during that time. If the Card does not detect an
increase in time, it may consider the clock broken and disable the time functions.

4.22 CI_Hash

The CI_Hash function hashes the data pointed to by pData. The hash value may be set to
an initial value or to an intermediate value by calling CI_InitializeHash (to start a hash
process) or CI_Restore (to continue an interrupted hash process) functions, respectively.
The CI_Hash function will continue to hash building on the current hash value. The size
of the data must be a multiple of 512 bits (64 bytes) and not equal 0. Use the
CI_GetHash function to hash the final block of data and retrieve the Hash Value.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

14

4.23 CI_Initialize

The CI_Initialize function initializes the CI Library. All other function calls will return a
CI_LIB_NOT_INIT error if they are called before this function. To close the CI Library
call CI_Terminate.

Note that a Socket must be opened, with the CI_Open function, to issue any commands
to the Card.

4.24 CI_InitializeHash

The CI_InitializeHash function will initialize the hash value according to the DSA
standard for general hash use on various block sizes of data. It must be executed before
beginning a hash process, either CI_Hash or CI_GetHash.

4.25 CI_InstallX

The CI_InstallX function will restore an archived Private Component (X) that was
extracted by the CI_ExtractX function.

Note that the constant CI_PASSWORD_SIZE is defined to be 24 bytes and
CI_PASSWORD is a 28 byte character array: CI_PASSWORD_SIZE + a 1 NULL byte
terminator + a 3 byte pad (to assure byte alignment on word boundaries).

Note that the CI Library pads the password with zero (0) to CI_PASSWORD_SIZE (24)
bytes before passing it to the Card.

4.26 CI_LoadCertificate

The CI_LoadCertificate function loads a certificate into the non-volatile memory of the
Card. The CertificateIndex parameter specifies the location of where the certificate is to
be loaded. The Certificate Index is used to bind the Certificate Label and the certificate to
the public key pair that was generated or loaded with CI_GenerateX or CI_LoadX
function. Use the CI_GetConfiguration function to determine the maximum number of
certificates that the Card can hold.

The constant CI_CERT_NAME_SIZE is defined to be 32 bytes and CI_CERT_STR is
a 36 byte character array: CI_CERT_NAME_SIZE + a 1 NULL byte terminator + a 3
byte pad (to assure byte alignment on word boundaries).

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

15

4.27 CI_LoadDSAParameters

The CI_LoadDSAParameters loads temporary DSA p, q, and g values into the volatile
memory of the Card. These values are defined as follows:

• p - the prime modulus (512 - 1024 bits (64 - 128 bytes), as indicated by PSize)

• q - the prime divisor (160 - 320 bits (20 - 40 bytes), as indicated by QSize)

• g - a value (512 - 1024 bits (64 - 128 bytes), same size as p, as indicated by PSize)

Note that the DSA Parameters will be lost when the Card is reset.

If this command is successfully performed to allow verification of a message and if the
Card is in Ready State, the Card will transition to the Standby State. The host must set the
user personality.

4.28 CI_LoadInitValues

The CI_LoadInitValues function allows the SSO Enabled User to load or modifies the
Card’s initialization parameters. These parameters include:

• Random Number Seed Value - 64 bit (8 byte) seed value

• User Storage Key Variable (Ks)- A plaintext value (80 bits (10 bytes))

The Random number is loaded into the Card and used to seed the internal random number
generator. The User Storage Key Variable (Ks) is used in the user’s authentication
algorithm. This Ks is wrapped by the hash of the User’s PIN phrase value. The Ks value
is loaded in plaintext.

Note that the SSO PIN phrase must be changed after this command has successfully
completed.

4.29 CI_LoadIV

The CI_LoadIV function loads an Initialization Vector (IV) onto the Card for decryption
operations.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

16

4.30 CI_LoadX

The CI_LoadX function loads the Private Component (X), into the non-volatile memory
of the Card. The Private Component is given a Certificate Index of the corresponding
Certificate. The Public Component (Y), is generated and returned in pY.

4.31 CI_Lock

The CI_Lock function grants an application with exclusive access to the currently
selected socket and its Card. CI_Unlock releases a Lock. CI_Close will also release a
Lock.

4.32 CI_Open

The CI_Open function opens a Socket. Sockets are numbered from one (1) to
SocketCount. (SocketCount is returned by CI_Initialize). All subsequent commands will
be issued to the socket opened. Use the CI_Select command to select from any of the
currently open sockets. A card does not need to be in the socket before executing this
command.

4.33 CI_RelayX

The CI_RelayX functions allows either the SSO Enabled User or a User to change the
password and re-wrap an archived Private Component, X.

Note that the constant CI_PASSWORD_SIZE is defined to be 24 bytes and
CI_PASSWORD_PIN is a 28 byte character array: CI_PASSWORD_SIZE + a 1
NULL byte terminator + a 3 byte pad (to assure byte alignment on word boundaries).

The CI Library will pad the password with zero (0) to CI_PASSWORD_SIZE (24) bytes
before passing it to the Card.

4.34 CI_Reset

The CI_Reset functions will reset the Card. All registers and common memory are
zeroized. The User or SSO Enabled User will be logged off of the Card. The CI_Reset
function does not terminate the CI Library, use the CI_Terminate function to close the
CI Library.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

17

4.35 CI_Restore

The CI_Restore function will restore the state of the cryptologic operation specified by
CryptoType. The state may be restored from either the Card’s internal storage or from a
memory buffer. The state information in the memory buffer must have been supplied by
the CI_Save function for the same cryptologic operation. The user should execute
CI_GenerateIV before this command to assure proper configuration of the Crypto
Engine.

4.36 CI_Save

The CI_Save function will save the state of the cryptologic operation specified by
CryptoType. The application has the option of receiving a copy of the state information.
The information includes the Card’s state, CryptoMode, encrypt decrypt flag, or its
intermediate hash value and bits hashed. The state of the cryptologic operation may be
restored by the CI_Restore function.

The Card can store only one copy of each cryptologic operation state. Also, regardless of
the applications request for internal or external storage, the Card will always write or
duplicate the current state into the Card’s internal storage for the type of operation
specified. For example,

4.37 CI_Select

The CI_Select function selects the socket specified by SocketIndex. All subsequent
commands will be issued to the socket selected. Sockets are referenced by index, which
range from 1 to SocketCount. (SocketCount is returned by CI_Initialize).

The CI Library no longer supports requests for SocketIndex 0. This request will result in
an error, CI_INV_SOCKET_INDEX.

4.38 CI_SetConfiguration

The CI_SetConfiguration function is used to set the configuration of the Card.

4.39 CI_SetKey

The CI_SetKey function loads the key specified by RegisterIndex into the cryptologic for
subsequent cryptologic functions that use an implicit Key Register.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

18

4.40 CI_SetMode

The CI_SetMode function is used to set the cryptologic mode to the mode specified in
CryptoMode for the cryptologic operation specified in CryptoType.

4.41 CI_SetPersonality

The CI_SetPersonality function sets the Personality of the Card to the Certificate Index
specified by CertificateIndex. The Personality defines which Certificate Index will be
used to locate a certificate or Private Component (X), for use with functions such as
CI_Sign. Use the CI_GetCertificate function to retrieve the certificate associated with
CertificateIndex. The Personality may be changed at any time after a successful log on.

Note that not all of the Certificate Indexes in the personality list are valid Personalities. It
is up to the host application to parse the Certificate Label to determine if the Certificate
Index is a valid Personality. Use the CI_GetPersonalityList function to get the list of
Certificate Indexes and Certificate Labels.

4.42 CI_SetTime

The CI_SetTime function allows the SSO Enabled User to set the time and date on the
on-board real-time clock.

4.43 CI_Sign

The CI_Sign function computes a Digital Signature, using the Digital Signature
Algorithm (DSA), usually over the provided Hash Value. The Hash Value is signed with
the Private Component (X) of the Personality and an internally generated random value,
K. Use the CI_VerifySignature function to verify a Signature created with the DSA.

4.44 CI_Terminate

The CI_Terminate function closes the CI Library. The CI_Terminate function will first
close any open Sockets, then close the communication link with the PCMCIA Socket
Services.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

19

4.45 CI_TimeStamp

The CI_TimeStamp function generates a Digital Signature over the provided Hash Value
and the current time from the Card’s on-board real-time clock.

4.46 CI_Unlock

The CI_Unlock function releases an application’s exclusive access, established by
CI_Lock, to the currently selected socket and its card.

4.47 CI_UnwrapKey

The CI_UnwrapKey function will unwrap the wrapped key in the buffer pointed to by
pKey, using the key in the Key Register indicated by UnwrapIndex. After the key is
unwrapped, the Card will perform a checkword test and compare the generated value to
the unwrapped value. If they compare, the key will then be loaded into Key Register
indicated by KeyIndex.

4.48 CI_VerifySignature

The CI_VerifySignature function validates a Digital Signature, usually against the Hash
Value, and signers Public Component (Y). Digital Signatures can be created with the
CI_Sign function.

4.49 CI_VerifyTimeStamp

The CI_VerifyTimeStamp validates the Hash Value and Time Stamp with the Public
Component (Y) supplied.

CI_VerifyTimeStamp : [pHashValue, pSignature, pTimeStamp]
{return value}
int CI_VerifyTimeStamp(CI_HASHVALUE pHashValue, CI_SIGNATURE

pSignature, CI_TIMESTAMP pTimeStamp)

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

20

4.50 CI_WrapKey

The CI_WrapKey function will wrap the plaintext key in the Key Register indicated by
KeyIndex with the key in the Key Register indicated by WrapIndex. The resulting
wrapped key is returned in pKey.

4.51 CI_Zeroize

The CI_Zeroize function will zeroize the Card’s data buffers, internal buffers, key
management information, personalities, all public key pairs (X and Y), all Key Registers
and disallows user access. After execution of this command the Card will enter the
zeroized (CI_ZEROIZED) state. The Card will need to be re-initialized by the SSO
Enabled User. Note that the SSO Enabled User will need to use the Zeroize Default PIN
to authenticate to the Card.

5 Roles

The PCcard supports the following roles:

• Crypto-Officer Role,

• User Role

The PCcard enforces the separation of roles by restricting the services available to each
role.

5.1 Crypto-Officer Role

The Crypto-Officer is responsible for initializing the PCcard. The Crypto-Officer role is
only available during card initialization on a Certificate Authority Workstation (CAW).
The CAW is keep secure in accordance with the site security policy of the deploying
organization. The Crypto-Officer has access to all services on the card.

The PCcard validates the Crypto-Officer role by requiring a Personal Identification
Number (PIN) in order to access it. A valid PIN must be passed to the PCcard before it
will accept any commands required to perform the initialization service.

The Crypto-officer is also responsible for the initialization of the PCcard for use as a
Crypto token, Prior to delivering the unit to the user. A valid PIN must be passed to the

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

21

PCcard to authenticate the Crypto-officer before it will process the initialization
command.

The Initialization services cause the PCcard to generate its public/private key pair, export
the public key, and load the X.509 certificate into the root certificate slot on the PCcard.

The Crypto-officer must also set the PIN phrase for the user, and may change the PIN
phrase for the Crypto-officer. Only the Crypto-officer may change a PIN phrase.

5.2 User Role

The PCcard supports a User role, for which the following service not allowed:

• Change Pin Phrase

• Extract X

• Load Initialization Values

• Set Time

The PCcard validates the User role by requiring a Personal Identification Number (PIN)
in order to access it. Some services input data into the PCcard. The PCcard further
validates the requester by checking the Service State on the PCcard.

The PCcard provides services by exchanging commands between itself and a host
computer over the PCMCIA Interface. The proper library software must be installed on
the host to access PCcard services.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

22

 Roles Cryptographic
Functions

Services Crypto-Officer User Yes No

 Self-test X X X
Change Pin Phrase X X
Check Pin Phrase X X X
Decrypt X X X
Delete Certificate X X X
Delete Key X X X
Encrypt X X X
Extract X X X
Firmware Update X X X
Generate IV X X X
Generate Mek X X X
Generate Ra X X X
Generate Random Number X X X
Generate TEK X X X
Generate X X X X
Get Certificate X X X
Get Hash X X X
Get Personality List X X X
Get Status X X X
Get Time X X X
Hash X X X
Initialize Hash X X X
Install X X X X
Load Certificate X X X
Load DSA Parameters X X X
Load Initialization Values X X
Load Iv X X X
Load X X X X
Relay X X X
Restore X X X
Save X X X
Set Key X X X
Set Mode X X X
Set Personality X X X
Set Time X X
Sign X X X
Timestamp X X X
Unwrap Key X X X
Verify Signature X X X
Verify Timestamp X X X
Wrap Key X X X
Zeroize X X X

Figure 4.1 Services vs. Roles vs. Cryptographic Functions Matrix

The cryptographic functions performed by the Fortezza Crypto Card in the processing of
each service is summarized in figure 4.1, and described in the following sections.

SPYRUS Fortezza Crypto Card Security
Policy

Spyrus Document No. 510-105000-
A1

23

5.3 Self-test

The PCcard performs self-test immediately upon power-up to insure the integrity of the
device. Cryptographic and firmware checks are performed to insure that the device is
operating properly prior to communicating with the host computer. Any failures will
cause the PCcard to go into a non-operational error state. No authentication of the
Crypto-officer or user is required for this service.

	Revision History
	Introduction
	Scope

	Overview
	Function Formats
	Function Description
	Parameter Formats
	
	
	
	
	
	
	PIN[0] = ‘C’; PIN[1] = ‘R’; PIN[2] = ‘Y’; PIN[3] = ‘P’; PIN[4] = ‘T’; PIN[5] = ‘O’;
	PIN[6] = ‘G’; PIN[7] = ‘R’; PIN[8] = ‘A’; PIN[9] = ‘P’; PIN[10] = ‘H’; PIN[11] = ‘Y’

	Data Structures
	Function Organization

	Function Descriptions
	CI_ChangePIN
	CI_CheckPIN
	CI_Decrypt
	CI_DeleteCertificate
	CI_DeleteKey
	CI_Encrypt
	CI_ExtractX
	CI_FirmwareUpdate
	CI_GenerateIV
	CI_GenerateMEK
	CI_GenerateRa
	CI_GenerateRandom
	CI_GenerateTEK
	CI_GenerateX
	CI_GetCertificate
	CI_GetConfiguration
	CI_GetHash
	CI_GetPersonalityList
	CI_GetState
	CI_GetStatus
	CI_GetTime
	CI_Hash
	CI_Initialize
	CI_InitializeHash
	CI_InstallX
	CI_LoadCertificate
	CI_LoadDSAParameters
	CI_LoadInitValues
	CI_LoadIV
	CI_LoadX
	CI_Lock
	CI_Open
	CI_RelayX
	CI_Reset
	CI_Restore
	CI_Save
	CI_Select
	CI_SetConfiguration
	CI_SetKey
	CI_SetMode
	CI_SetPersonality
	CI_SetTime
	CI_Sign
	CI_Terminate
	CI_TimeStamp
	CI_Unlock
	CI_UnwrapKey
	CI_VerifySignature
	CI_VerifyTimeStamp
	CI_WrapKey
	CI_Zeroize

	Roles
	Crypto-Officer Role
	User Role
	Self-test

